Subscription and Workspaces

r_subheading-Course Description-r_end An Azure subscription is the first step in the process of data mining in Azure Machine Learning Studio. Once we have a subscription, we can create an Azure ML Studio workspace within Azure. r_break Azure ML is in the cloud and allows for workspaces to be shared with other users for collaborative data science projects. r_break r_break r_subheading-What You'll Learn-r_end • Create Azure subscription. r_break • Create workspaces in Azure ML studio.r_break r_break You can get a free trial of Azure r_link-here- -r_end, and this is the r_link-link- to the Azure Portal


Hello, internet. Welcome back to the Data Mining with Azure Machine Learning Studio by Data Science Dojo. r_break r_break Today’s video, we’re going to go ahead and create on Azure subscription. We’re going to create an Azure ML workspace within that subscription. We’re going go in and explore the features within that Azure ML workspace. r_break r_break And if you already have an Azure ML workspace, go ahead and skip this video and go to the next video, where I jump straight into building experiments, importing, and exporting data. r_break r_break OK, so the first thing we’re going to need to do is we’re going to need to get an Azure free trial subscription. r_break r_break The first thing you can do is you can either type in this link. Go ahead and pause this video and type in this link to your browser. r_break r_break Or you can just go to a search engine and then type in Azure free trial, and it should be the first link that shows up, so trial. So go ahead and click on that, and then it’s going to go ahead and say Start free trial. You will be prompted to log into a Microsoft-type account. So that is like an email that is like @live, @outlook. I believe Gmail is supported, so you can try that as well. r_break r_break So if this is the first time you’ve ever signed up for Azure, notice you’ll be brought to this page where you’ll have one month that is a free trial, and you will get $200 of credit in that first month. So whatever one hits first, whether it be 30 days or $200. r_break r_break All right, so when signing up, you’ll need two things. You’ll need a phone number and a working phone with that phone number. They’re going to text you a verification code. r_break r_break The next thing you’ll need is a credit card. OK? So they need this to verify your identity to make sure that you’re not a bot making subscriptions to then create more subscriptions to make more bots. Another thing is they’re trying to make sure that you don’t go from month to month with a different email getting free Azure stuff for free. All right, so they’re not going to charge this credit card at all. It’s just going to be used to verify your identity. Now, those of you, I think, who have banks in China and India might get charged some kind of $1 verification fee. That is dependent on your bank, I believe. r_break r_break All right, so once you have your Azure ML subscription, to log into that subscription, you would go to I’m going to go ahead and paste that into my browser. Now, you can go ahead and just go to a search engine and also just type in Azure as well. It would, I think, is what you’ll be sent to. You can just click on the Portal at the top. I’m just going to go ahead and log in right here. This should be a screen that you should see when you log in to your Azure subscription. r_break r_break So you’ll notice, this is our main dashboard. This displays a bunch of tiles that is very akin to Windows. So what we’re going to go ahead and do now is notice that these are all the app services that we can go ahead and spin up in the Azure Service, but we’re here for a very specific service, and that is Azure Machine Learning Studio. r_break r_break So to make a new workspace, or to make a new anything in Azure, go ahead and click this New button, on the top left hand corner of your subscription page. So go ahead click New. r_break r_break You’re going to type in and search for a service called Machine Learning, and once that is there, you’re going to look for something called Machine Learning Workspace by Microsoft. OK? So click on that, and then you’ll get a brief description about what Azure machine learning is. Go ahead and then click Create. OK, so you’ll be then prompted, and so this thing over here that just popped up is what’s called a Blade. So in this blade, you’ll be prompted to enter in a bunch of information about this workspace that we’re about to create. All right, you get to name the workspace. So I’m going to go ahead and name it, I don’t know, Phuc Workspace. r_break r_break Yeah. I’m going to go ahead and– so if you have multiple subscriptions, which I do, you’ll see this drop down box over here. If you only have one subscription, you probably won’t see this subscription here, but it lets you basically pin this Azure asset to that subscription to be built to. r_break r_break All right, so the next thing is we need to basically pin this to a resource group. So you can use an existing resource group, or you can create a brand new one. r_break r_break So what a resource group is it’s a logical container that binds cloud assets together for billing and automation purposes. r_break r_break So the idea is you would pin a bunch of Azure assets that are doing the same task, or the same job, or for the same project, to the same thing. Think of it like a folder, but for your online cloud-based assets. So that is, if you delete this resource group, it deletes everything in the resource group. It’s all built together, and it’s also automated together. You can spin it all up once, if you know how to do PowerShell scripting or things like that. r_break r_break For new users, you tend to not care about what this resource group thing is. Just go ahead and create one. r_break r_break So I’m going to call– I normally like to name my resource group the same thing as the asset that’s contained in it. So I will call this workspace Resource Group. r_break r_break OK, and then you’ll be prompted to, which data center do you wish to use? So the location of the data center matters if you need to take in a lot of data or if you need the output a lot of data. So normally, you are not really charged much for bringing in data to the cloud, but you’re charged a lot for actually taking data out of the cloud. So I would recommend that wherever you want to consume the final output of the data is where you should go ahead and set the data center to be. So because I want to do everything in the US, I’m going to go ahead and select Central US, and then it’s going to ask us to create a new storage account. r_break r_break So the storage account is a separate service within Azure. It’s called Azure Blob Storage, and what this is is basically cloud storage. Remember, you’re getting charged about $0.02 per gigabyte per month to store something in here. So this is where all your data is going to be backed up to, and this is where all the Azure ML experiments can be saved. r_break r_break Now, if you delete this storage container later, it’s going to go ahead and, your workspace won’t be deleted, it will just error lock, because it no longer has the data it was referring to. r_break r_break And the name of this workspace will have to be a globally unique name, because this will become a URL for your cloud storage. So think of it like a domain name, like or something like that. r_break r_break So this check mark over here will tell you that it is free and clear to be used. It all has to be lowercase, and all has to be in letters, no symbols, no numbers, nothing, all lowercase and just text. So it’s gone ahead and named it for me, so Phuc Workspace storage. OK, I’m fine with that. r_break r_break And then, the for the pricing tier, I think you can just leave that standard. I think it only has standard right now. I think they’re beta testing some other tiers, right now. r_break r_break And then we’re going to go ahead and for the web service plan, unless you really know what you’re doing, don’t set anything here. And basically what this is is it will set– when you deploy web services, you’re picking what kind of tiers of service you want for that web service. How robust do you want that service to be? How many people and transactions do you want it to support? For the most part, the free one is fine, where we have 1,000 transactions is fine. OK? r_break r_break So we’ll create a brand new web service plan for that, and we’ll select that as a tier, which is no pricing. We’ll select the standard tier, which charges us nothing, but we only get 1,000 API calls. Which I think is more than fine, especially if we’re just prototyping. r_break r_break OK, so once we filled everything out here, I think we’re good to go, we will want to pin this asset to our dashboard. r_break r_break So remember those tiles we saw at the beginning? That’s where we want our asset to be, so we can always refer to it later. So go ahead and click the Create button now. So this will take about two minutes to create. Go ahead and do something else for those two minutes. You will see a tile that has now appeared, because we selected that button. It says Pinned to the Dashboard, and this is going to spin for the next two minutes. All right, it looks like it’s finished creating, and it automatically brought me into the asset. But if you don’t know how to get back here, if you’re on the dashboard, you can just click on the tile that was pinned. So click on the tile and you’ll get back to this page. r_break r_break So this page lets you basically manage the Azure asset that is the Azure ML workspace. And now to get to the workspace itself, you will click this button under Additional Links that says Launch Machine Learning Studio. r_break r_break Now, what I actually prefer is this actually goes through a separate website. So you can actually go to Azure ML by just going to That does the same thing. So if you take this URL and paste it into your browser, it’ll take you to the same place as clicking this button. So I actually prefer this URL, because it cuts out the middle man. r_break r_break Because the idea is, all right, I have to log into Azure, and then once I’m in Azure, I have to find my asset. I have to click on my asset. Once I click on my asset, I have to click on this Launch Machine Learning Studio. Or, if I just want to use Azure ML, I will just go directly to this URL, and I’ll cut out Azure altogether. I’ll go directly into Azure ML Learning Studio. That’s just a tip that I’ll give to you. r_break r_break All right, and it’s going to ask you to sign in again. It will share your Azure subscription. So that’s fine. r_break r_break So go ahead and log into your Azure subscription, but this time do so by logging into your Azure subscription. r_break r_break So notice, I’m inside of Phuc workspace. So that is the name of my workspace. So notice that you can have lots of different workspaces, and notice that you can select different regions and things like that. So there’s nothing stopping you from having lots of workspaces. So you can also change workspaces up here. r_break r_break So I notice I don’t have anything in West Central US, but I think if I go to South Central US, I have four other workstations I can select from. So notice, these are all self-contained workstations that are either been, A, shared with me, or I’m hosting them on a separate account somewhere. r_break r_break So let’s go back to our current one. So that’s how you switch workspaces. r_break r_break Now, the reason for this is if you go to, for example, the Setting button over here, you can invite users to your workspace. So that is, if you have a team, if you’re working on a project, you make a new workspace and invite all your team members to that workspace. And that will be a self-contained workspace. r_break r_break So this is the closest thing that we data scientists have to a Google doc right now. This is probably one of the coolest collaboration tools we’ve had in a while. So you can always do this. You can invite more users, for example, and then I can invite my buddy Eric at, for example, and I can go ahead and make him a user. So now, Eric can go ahead and log in to see the same experiment, data models, everything that I would see in this together. r_break r_break And then, notice that if I want to switch teams or projects, I would switch the workspace. r_break r_break Remember, you’re charged $9.99 per workspace, so keep that in mind. So the data sets that you will bring into Azure will be saved here. They are basically objects. Any models that you train will be in here. r_break r_break There’s also a new feature, which is Notebooks. So a brand new way of programming that’s taking the programming world by storm is Notebooks. The idea of a self-contained environment that can be deployed to the web, where you just code on the web, and then you can use almost any language that you would want to. And you can share those notebooks or just expose them as web services, which is really cool. So right now it supports Python and R Notebooks. So those are the primary programming languages right now in the open source world for data scientists. r_break r_break If you have any deployed web services, they would be here, but your bread and butter will be this guy right here, the Experiments tab. r_break r_break So an experiment is what they call a file, for data science, instead of Azure ML. So just like a spreadsheet. A spreadsheet file in Excel is called a spreadsheet. Right? And a Word document called a document. These are called experiments, and then you can pin multiple assets together into what’s called Projects. r_break r_break And notice, I can Create a Project, name the project, and then I can pin various experiments, web services, and data assets to this project. r_break r_break So notice I can have multiple projects going on at the same time for the same team, and everything will be good. r_break r_break And how I got here was, see this thing in the top left hand corner here, you can click here and click on the Studio. r_break r_break So Azure ML actually has three other pages associated with it. For the most part, you almost always want to be in this Studio Mode, right here. OK? r_break r_break And I think we’re out a time for this video. Go ahead in watch the next video, where I will go ahead and show you how to create your first experiment, import data, export data. r_break r_break And if you want to see more videos like this in the future, go ahead and like and subscribe, and I will look forward to seeing you at our boot camp. See you next time.

Phuc H Duong - Phuc holds a Bachelors degree in Business with a focus on Information Systems and Accounting from the University of Washington.